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Overview of the presentation

● Basic physics of laser-plasma a accelerators (LPAs): LPAs as compact
particle accelerators

● Challenges in modeling LPAs over distances ranging from cm to m scales

● The code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde)
➔ basic equations, numerics, and features of the code

 
● Numerical modeling of LPAs: 

➔ modeling present LPA experiments: 4.3 GeV in a 9 cm w/ BELLA
(BErkeley Lab Laser Accelerator, 40  J, 30 fs, > 1 PW), using ~15 J
laser energy [currently world record!]

➔ modeling future LPA experiments:  10 GeV LPA 
● Conclusions



Advanced accelerator concepts (will be)
needed to reach high energy

LHC

ILC

● “Livingston plot”: saturation of accelerator technology:
→  practical limit reached for conventional RF accelerators
→  max acc. gradient ~100 MV/m (limited by material breakdown)   

~ 8.5 Km

~ 30 Km

● Higher energy requires longer machine:
→  facility costs scale with size (and| 

power consumption)
→  TeV machines are desirable
→  50 MV/m implies 20 km/TeV|
→  > 50% cost in main accelerator|

M. Tigner, Does accelerator-based
particle physics have a future?, Phys.
Today (2001)



Laser-plasma accelerators*: laser ponderomotive force
creates charge separation between electrons and ions

Short and intense laser propagating in a  plasma (gas of electrons & ions):
- short →  T

0 
=L

0
/c ~ λ

p
/c of tens of fs 

- intense →  a
0
=eA

0
laser/mc2 ≈8.5•10-10 I

0
1/2[W/cm2] λ

0
[μm] ~ 1 

                  (Ti:Sa laser, λ
0
=0.8 um, I

0
>1018 W/cm2)

*Esarey et al., Rev. Mod. Phys. (2009)
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Laser-plasma accelerators:
1-100 GV/m accelerating gradients

● Wakefield excitation due to charge separation: ions at rest VS electrons
displaced by ponderomotive force

E
z
 ~ mcω

p
/e ~ 100 [V/m] x (n

0
[cm-3])1/2

e.g.: for n
0
 ~ 1017 cm-3, a

0
~ 1 →  E

z
 ~ 30 GV/m,

~ 102-103 larger than conventional RF accelerators 

wakefield, E
z
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comoving coordinate, ζ

plasma density waves

laser

λ
p

E
z
~√n

0

Map of longitudinal wakefield, E
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Laser-plasma accelerators:
laser wake provides focusing for particle beams

→  electron and positrons
can be accelerated and 
focused in an LPA

→  relative size of focusing
and accelerating domains 
for electrons and positrons
depends on laser intensity

→  for a
0
>>1 the domain for 

positron focusing shrinks
  



Electron bunches to be accelerated in an LPA 
can be obtained from background plasma

Electron 
bunch to be 
accelerated

→ external injection (bunch from a conventional accelerator)

→ trapping of background plasma electrons

Requires:
- short (~ fs) bunch generation
- precise bunch-laser synchronization 

k px

k
p
(z-ct)

Self-injected bunch

laser

* self-injection (requires high-intensity, high 
plasma density) → limited control

* controlled injection → use laser(s) and/or 
tailored plasma to manipulate the plasma wave 
properties and “kick” background electrons inside 
the accelerating/focusing domain of the wake:

 - laser-triggered injection (e.g., colliding pulse)
 - ionization injection
 - density gradient injection 



Example of LPA experiment: 
1 GeV high-quality beams from ~3 cm plasma 

GeV e-bunch produced from cm-scale
plasma (using 1.5 J, 46 fs laser, focused
on a 3.3 cm discharge capillary with a
density of 4x1018 cm-3)*  

*Leemans et al., Nature Phys. (2006); Nakamura et al., Phys. Plasmas (2007)

E=1012 MeV 
dE/E = 2.9%
1.7 mrad

3.3cm



Scalings for e-beam energy in LPAs 

Limits to single stage energy gain:

✔ laser diffraction (~ Rayleigh range) 
→   mitigated by transverse plasma density tailoring (plasma channel) 

and/or self-focusing: (self-)guiding of the laser

✔ beam-wave dephasing: 
|v

bunch
/c ~ 1, v

wave
/c~ 1-λ

0
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p
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BELLA facility (BErkeley Lab Laser
Accelerator) aims at reaching 10 GeV  

BELLA facility*:|
  - state-of-the-art PW-laser for accelerator science
        U

laser
=40 J, T

laser
=30 fs (> 1 PW), 1 Hz repetition rate

  - 10 GeV LPA requires n
0
 ≈ 1017 cm-3, L

acc
 ≈ 10-100 cm plasma

                                                 (depends on LPI regime)  

*Leemans et al., AAC (2010)
+ Leemans et al., PRL (2014)

- so far+, using 16 J, a 4.3 GeV
e-beam in a 9 cm plasma (n

0
=

7∙1017cm-3) has been obtained 



Numerical modeling can help understanding the
physics and aid design of future LPAs

Physics of laser-plasma interaction is (highly) nonlinear:

→  no (or very few) analytical solutions are available

→  fully nonlinear simulation tool is required to help 
         understanding the physics, and aid the design of 
          next generation LPAs, in particular, we need to:

● model laser evolution in the plasma (optimize guiding)
● model 3D wake structure (optimize accelerator)
● model kinetic physics related to particle trapping 

(optimize injection)
● model details of the dynamics accelerated beam 

==> Requires solving Maxwell's equations for electromagnetic fields 
(laser+wake) coupled with evolution equation for plasma (Vlasov 
equation) 



Particle-In-Cell (PIC)* scheme is a widely adopted
modeling tool to study LPAs

Initial condition:
laser field & plasma
configuration

Initial condition:
laser field & plasma
configuration

Deposit
charge/current:
particles →  grid,

(r
k
,p

k
) →  J

i,j

Deposit
charge/current:
particles →  grid,

(r
k
,p

k
) →  J

i,j

Compute  force:
interpolation 

grid →  particles,
  (E,B)

i,j
 →  (E

k
, B

k
)

Compute  force:
interpolation 

grid →  particles,
  (E,B)

i,j
 →  (E

k
, B

k
)

       Push particle       Push particle
      Integration of 

      EM field equations
      Integration of 

      EM field equations

Δt

EM fields (E, B, J) →  represented on a (3D)  spatial grid
plasma (electrons, ions) →  represented via numerical particles (macroparticles)

(i, j) k

Spatial grid

PIC
scheme

*Birdsall, Langdon ”Plasma physics via computer simulations”



3D full-scale modeling of an LPA over 
cm to m scales is a challenging task 

plasma
waves

laser 
wavelength (λ

0
)

~ μm

laser length (L)  ~ few tens of μm

plasma wavelength
(λ

p
)

~10 μm @ 1019 cm-3

|~30 μm @ 1018 cm-3   

~100 μm @ 1017 cm-3 

interaction length
(D)

~ mm @ 1019 cm-3 →  100 MeV
~ cm @ 1018 cm-3 →  1 GeV
~ m @ 1017 cm-3 →  10 GeV λ

p

λ
0

L

Simulation complexity: 
∝ (D/λ

0
) x (λ

p
/λ

0
)

∝ (D/λ
0
)4/3 [if D is dephasing 

length]

3D explicit PIC simulation:
✔ 104-105 CPUh for 100 MeV stage
✔ ~106 CPUh for 1 GeV stage|
✔ ~107 -108 CPUh for 10 GeV stage|

bunch
image from 
Shadwick et al.

Ex: Full 3D PIC modeling of 10 GeV LPA
grid: 5000x5002 ~109 points
particles: ~4x109 particles (4 ppc)
time steps: ~107 iterations  

laser 
pulse



What we need (from the computational point of view):

● run 3D simulations (dimensionality matters!) of cm/m-scale laser-plasma
interaction in a reasonable time (a few hours/days)|

• perform, for a given problem, different simulations (exploration of the
parameter space, optimization, convergence check, etc..)
|

The INF&RNO framework: motivations

Lorentz Boosted Frame*,~

[drawbacks/issues: control of 
numerical instabilities, self-injection 
to be investigated, under-resolved 

physics]

      Reduced Models#,%,^,&,@, +

[drawbacks/issues: neglecting some 
aspects of the physics depending 

on the particular approximation made]

*Vay, PRL (2007)
~S. Martins, Nature Phys. (2010)

# Mora & Antonsen, Phys. Plas. (1997) [WAKE]
% Huang, et al., JCP (2006) [QuickPIC]
^ Lifshitz, et al., JCP (2009) [CALDER-circ]
& Cowan, et al., JCP (2011) [VORPAL/envelope]
@ Benedetti, et al., AAC2010/PAC2011/ICAP2012 [INF&RNO] 
+ Mehrling, et al., PPCF (2014) [HiPACE]

 



● Envelope model for the laser
✔ no λ

0
 

✔ axisymmetric

● 2D cylindrical (r-z) 
✔ self-focusing & diffraction for the laser as in 3D
✔ significant reduction of the computational complexity

      ... but only axisymmetric physics

● time-averaged ponderomotive approximation to describe laser-plasma interaction|
✔ (analytical) averaging over fast oscillations in the laser field 
✔ scales @ λ

0
 are removed from the plasma model →  # of time steps 

reduced by ~λ
p
/λ

0
  

● PIC & (cold) fluid 
✔ fluid →  noiseless and accurate for linear/mildly nonlinear regimes
✔ integrated modalities (e.g., PIC for injection, fluid acceleration)
✔ hybrid simulations (e.g., fluid background + externally injected bunch)

● Moving window
✔ computational grid “follows” the laser and the trailing wakefield 

 
 * Benedetti et al., Proc. of AAC10; Benedetti et al., Proc. of ICAP12

INF&RNO* is orders of magnitude faster than conventional
PIC codes in modeling LPAs still retaining physical fidelity

INF&RNO ingredients:

laser field

envelope of 
the laser

k
p
(z-ct)



The INF&RNO framework: 
physical model

The code adopts the ”comoving” normalized variables ξ = k
p
(z − ct), τ = ω

p
t

● laser pulse (envelope): wave equation

● wakefield (fully electromagnetic): Maxwell's equation

● plasma 

where δ is the density and J the current density  



The INF&RNO framework: 
numerical aspects

● longitudinal derivatives: 
  - 2nd order upwind FD scheme* 

→ |(∂
ξ
f)

i,j
=(-3f

i,j 
+ 4f

i+1,j
- f

i+2,j
) /2Δ

ξ
- B.C. easy to implement (unidirectional 
  information flux in ξ from R to L)

 
  

● transverse (radial) derivatives:
- 2nd order centered FD scheme| 

→  (∂
r
f)

i,j
=(f

i,j+1
- f

i,j-1
) /2Δ

r

- fields are “well behaved” in r=0, (no singularity)

● RK2 [fluid]/RK4 [PIC] for time integration of particles/fields 

● quadratic shape function for force interpolation/current deposition [PIC]

● digital filtering for current and/or fields smoothing [PIC] 

● Langdon-Marder method for charge conservation [PIC]

 

  

k
p
(z-ct)

x

Δ
ξ

Δ
r

i, j

i, j+1

i, j-1

i+2, ji+1, j

 *Shadwick et al., Phys. Plasmas (2009)



● envelope description: a
laser

= â exp[ik
0
(z-ct)]/2 + c.c.

→  k
0
 = 2π/λ

0 
is the (initial) laser wavenumber;

● In order to accurately describe laser evolution in plasma it is important 
to correctly model changes in the spectral properties of the laser as the
laser depletes

→  INF&RNO adopts a 2nd order Crank-Nicholson scheme to evolve â:  

→  ∂/∂ξ is computed using a polar representation* for â, namely â=a exp(iθ),
providing a reliable description of laser evolution even at a relatively low
resolution

“slow”    “fast”

The INF&RNO framework: improved laser
envelope solver (for LPA problems)/1

laser field

envelope of 
the laser

*Benedetti, et al.,  Proc. of ICAP2012



1D sim.: a
0
=1, k

0
/k

p
=100, L

rms
 = 1 (parameters of interest for a 10 GeV LPA stage)

(L
pd

=80 cm)

The INF&RNO framework: improved laser
envelope solver (for LPA problems)/2



The INF&RNO framework: 
quasi-static solver*

● QS approximation: driver evolves on a time scale >> plasma response

→  neglect the ∂ /∂t in wakefields/plasma quantities

→  retain ∂ /∂t for the driver (laser or particle beam)   

for a given
driver configuration

solve
ODE/PDE

for plasma and 
wakefield →  

driver driver

driver is frozen while plasma
is passed through the driver
and wakefields are computed

wakefield is frozen 
while driver is ad-
vanced in time

Δt set 
according to

driver evolution
(much bigger

than conv. PIC)

*Sprangle , et al., PRL (1990)
Mora, Antonsen, Phys. Plas. (1997)

Huang, et al., JCP (2006)
Mehrling, et al., PPCF (2014)



Quasi-static solver allows for significant
speed-ups in simulations of underdense plasmas

   

● Reduction in # of time steps 
compared to full PIC simulations 
(laser driver) →  ~ (λ

p
/λ

0
)2 

● Reduction in # of time steps
compared to a PIC code w/ pon-
deromotive approx (laser driver)

 →  ~ λ
p
/λ

0

  
● QS solver cannot model some
aspects of kinetic physics like
particle self-injection

propagation distance, s [cm]

no
rm

al
iz

ed
 la

se
r 

in
te

ns
it

y,
 a

0

n
0
=4x1017 e/cm3

n
0
=3x1017 e/cm3

n
0
=2x1017 e/cm3

- - -  INF&RNO QS (< 1 hour on 1 CPU)
  ●    INF&RNO non-QS (several hours on ~100 CPUs)

U
laser

 = 40 J, 
T

0
=30 fs, 

w
0
=64 μm 

BELLA laser propagating in uniform plasma (gas-cell)



The INF&RNO framework: Lorentz 
Boosted Frame* (LBF) modeling/1

● The spatial/temporal scales involved in a LPA simulation DO NOT scale in
the same way changing the reference frame

* Vay, PRL (2007); Vay, et al., JCP (2011)

→  the LF is not the optimal frame to run a LPA simulation|
→  sim. in LBF is shorter (optimal frame is the one of the wake γ

*
~k

0
/k

p
)|

→  comp. savings if backwards propagating waves are negligible!|
→ |diagnostic more complicated (LBF ↔  LF loss of simultaneity) 



● LBF modeling implemented in INF&RNO/fluid (INF&RNO/PIC underway): 
✔ input/output in the Lab frame (swiping plane*, transparent for| 

the user)||
✔ some of the approx. in the envelope model are not Lorentz

invariant (limit max γ
LBF

)#

LF= 16h 47' VS  LBF=15'
k

p
ξ

LF

LBF →  LF

electron density

k p
x

k p
x

γ
LBF

= 8

E
z
 

laser

LF
LBF →  LF

k
p
ξ

LF
LBF →  LF

phase space: ext. injected bunch

p z/m
c

k
p
ξ

ω
p
t=200

ω
p
t=600

ω
p
t=1000

laser

laser

The INF&RNO framework: Lorentz 
Boosted Frame (LBF) modeling/2



INF&RNO has been benchmarked against other
PIC codes used in the laser plasma community* 

* Paul et al., Proc. of AAC08 (2008), 1C. Nieter and J.R. Cary, JCP (2004), 2R.A. Fonseca et al., ICCS (2002)  

Comparison with VORPAL1 and OSIRIS2



Performance of INF&RNO (PIC/fluid)
● code written in C/C++ &  parallelized with MPI (1D longitudinal domain decomp.)

→  typically we run on a few 100s to a few  1000s CPUs  

● code performance on a MacBookAir laptop (1.7GHz, 8GBRAM, 1600MHz DDR3)

● Examples of simulation cost

✔ 100 MeV stage (~1019 cm-3, ~ mm) / PIC →  ~102 CPUh
✔ 1 GeV stage (~1018 cm-3, ~ cm) / PIC →  ~103–104 CPUh||
✔ 10 GeV stage quasi-lin. (~1017 cm-3, ~m) / FLUID →  ~103 CPUh||
✔ 10 GeV stage quasi-lin. (~1017 cm-3, ~m) / FLUID + LBF[γ

LBF
=10] → |~10 CPUh

✔ 10 GeV stage bubble (~1017 cm-3, ~ 10 cm) / PIC →  ~104–105 CPUh

  

==> gain between 2 and 5 orders of magnitude in 
the simulation time compared to “standard” PIC codes

FLUID (RK2) PIC (RK4)

 0.54 μs / (grid point * time step) 0.9 μs / (particle push * time step) 



INF&RNO is used to model current BELLA
experiments at LBNL 

● Modeling of multi-GeV e-beam production from 9 cm-long capillary-discharge-
guided sub-PW laser pulses (BELLA) in the self-trapping regime* 

* Leemans et al., PRL (2014)

Understanding laser evolution  
(effect of laser mode and 
background plasma density on 
laser propagation): limit cap 
damage & provide “best” wake 
for acceleration  

→  features of INF&RNO allowed to run  several simulations for detailed para-
meters scan at a reasonable computational cost 

Interpreting post-interaction
laser spectra as an in situ 
density diagnostic: knowledge 
of density is crucial but difficult Model e-beam generation &

acceleration 



BELLA laser pulse evolution has been characterized studying
 the effect of transverse laser mode and plasma density profile 

● An accurate model of the BELLA laser pulse (U
laser

=15 J) has been constructed
measured longitudinal
laser intensity profile

transverse intensity 
profile based on exp data 

– top-hat near field: 
   I/I

0
=[2J

1
(r/R)/(r/R)]2

– Gaussian

● Propagation in plasma of Gaussian and top-hat is different

0 3 6 9 0 3 6 9 0 3 6 9
Propagation distance (cm)

FWHM=63.5 μm

1/e2 intensity



Post-interaction laser optical spectra have been used as an
independent diagnostic of the on-axis density

● Comparison between measured and simulated post-interaction (after 9 cm plasma)
laser optical spectra (U

laser
=7.5 J)   

simulated spectra corrected for 
the instrument spectral response

→  good agreement between experiment and simulation: independent (in situ) 
diagnostic for the plasma density

Simulation cost: 28 (# sim) x7 CPUh=200 CPUh



INF&RNO full PIC simulation allows for detailed investigation
 of particle self-injection and acceleration/1 

U
laser

=16 J
n

0
=7x1017 cm-3, r

m
 =80 μm

Simulation cost: (1-3) x 105 CPUh (gain ~ 1000 compared to full PIC) 



INF&RNO full PIC simulation allows for detailed investigation
 of particle self-injection and acceleration/2 

Energy [GeV]

di
ve

rg
en

ce
 [m

ra
d]

Measured e-beam spectrum [nC/SR/(MeV/c)]

U
laser

=16 J
n

0
=7x1017 cm-3, r

m
 =80 μm

E=4.2 GeV
dE/E=6%
Q=6 pC
x'=0.3 mrad

E=4.3 GeV
dE/E=13%
Q=50 pC
x'=0.2 mrad

Simulated energy spectrum

→  simulation results for the final e-beam properties in good agreement 
with experiment



Theory has been used to design 
different 10 GeV-class scenarios 
BELLA laser parameters

● energy, E
laser

 = 40 J

● pulse length, T
0
 ≥ 30 fs

       a
0 
> 4 (T

0
=30 fs) nonlinear (bubble)

      a
0 
≤ 2 (T

0
=100 fs) quasi-linear 

   (inj.+accel.)

Plasma parameters

● on-axis density, n
0
 = (1-4) x 1017 e/cm3

● laser guiding through plasma channel
(tailored transverse density profile)
→  obtained through MHD sim*|
→  optimization laser guiding |

 

t [ns]

matched radius [μm]

a
0
=0.0

a
0
=0.5

a
0
=1.0

T
fwhm

=27 fs
T

fwhm
=100 fs

Transverse channel density profile

r [μm]

n 0(r
) [

x 
10

17
e/

cm
3 ]

t=400 ns
t=402 ns
t=423 ns

regimes

*Bobrova et al., POP (2013)



10 GeV-class stage in the quasi-linear 
regime: injector + accelerator

Tlaser≈ 100 fs, E=40 J, a0=1.7, plasma channel n0≈2x1017 e/cm3 ==> requires triggered injection*

injector (negative density gradient)

np

Lup

Ldown

Lup ≈ Ldown ≈ 100 μm, np ≈ (5, 6, 7) x1017e/cm3 

laser

injector (gas-jet)

to the
plasma
channel

electron density 

Ez

Density gradients
momentarily slows down
plasma wave 
→  localized injection

→  injection phase can be accurately controlled
through np and Ldown

kp(z-ct)

lo
ng

. p
ha

se
 s

pa
ce

 * Gonsalves et al., Nature Phys. (2011)

pl
as

m
a 

de
ns

it
y

laser

short 
bunch

Electron density



Low energy spread beams produced in 40
cm acceleration length

accelerator (plasma channel)

k px

kp(z-ct)

Electron density

laser

bunch

E be
am

 [G
eV

]

z [cm]

Electron beam energy

Q ~ 10 pC
Eaverage ~ 9.1 GeV 
(dE/E)rms ~ 6 %
(σz)rms ~ 1 μm
(σx')rms ~ 0.15 mrad 

a pe
ak

good guiding of the laser 
for several tens of cm >> Z

R
 →  

←  laser diffracts 
without channel

z [cm]

Normalized laser intensity

Simulation cost: 18 kCPUh (gain ~5000 compared to full PIC) 



Conclusions

The INF&RNO computational framework has been presented

✔ INF&RNO is tailored to LPA problems

✔ the code is several orders of magnitude faster
compared to “full” PIC, while still retaining physical
fidelity →  possible to perform large parameters scan
at a reasonable computational cost 

✔ INF&RNO used to model current (and future) BELLA 
experiments at LBNL, and to test new ideas 

✔ Simulations are critical to the development of advanced
acceleration techniques 
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